Nanoscale Multireference Quantum Chemistry: Full Configuration Interaction on Graphical Processing Units
نویسندگان
چکیده
منابع مشابه
Quantum Monte Carlo on graphical processing units
Quantum Monte Carlo (QMC) is among the most accurate methods for solving the time independent Schrödinger equation. Unfortunately, the method is very expensive and requires a vast array of computing resources in order to obtain results of a reasonable convergence level. On the other hand, the method is not only easily parallelizable across CPU clusters, but as we report here, it also has a high...
متن کاملAssessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo.
The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incomple...
متن کاملQuantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation.
Modern videogames place increasing demands on the computational and graphical hardware, leading to novel architectures that have great potential in the context of high performance computing and molecular simulation. We demonstrate that Graphical Processing Units (GPUs) can be used very efficiently to calculate two-electron repulsion integrals over Gaussian basis functions [Formula: see text] th...
متن کاملLocal weak-pairs pseudospectral multireference configuration interaction
We present a new reduced scaling multireference singles and doubles configuration interaction ~MRSDCI! algorithm based upon the combination of local correlation and pseudospectral methods. Taking advantage of the locality of the Coulomb potential, the weak-pairs approximation of Saebo” and Pulay is employed to eliminate configurations having simultaneous excitations out of pairs of distant, wea...
متن کاملMany-body quantum chemistry on graphics processing units
Heterogeneous nodes composed of a multicore CPU and at least one graphics processing unit (GPU) are increasingly common in high-performance scientific computing, and significant programming effort is currently being undertaken to port existing scientific algorithms to these unique architectures. We present implementations for two many-body quantum chemistry methods on heterogeneous nodes: the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2015
ISSN: 1549-9618,1549-9626
DOI: 10.1021/acs.jctc.5b00634